

International Conference on Disruptive Technologies for Multi-Disciplinary Research & Applications

Organized by Dayananda Sagar Group of Institutions 19 - 21 November 2021 Bengaluru, India

EEE conference ID: 52345 Paper ID: 39 10 Data Driven Kinematic Modeling of Human Gait for Synthesize Joint Trajectory Presented by.

Bharat Singh MNIT Jaipur, India

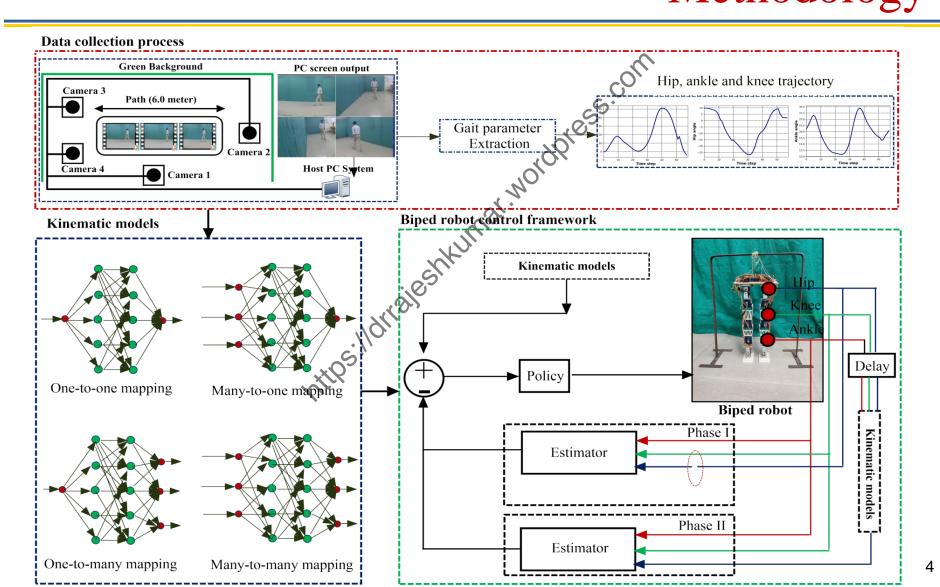
Bharat Singh Ankit Vijayvargiya **Rajesh Kumar**

Presentation Outlines

https://draieshkumar.wordpress.com ➢Introduction ➢ Methodology >Deep learning models ≻Model parameters **≻**Results ➤Conclusion ➢ References

Introduction

- Synthesis of reference joint trajectories for the legged robot is a very difficult task due to higher degrees of freedom.
- ➤This work presents the kinematic modeling of human gait data, which is used as the reference joint trajectory for a Biped robot, 8 deep learning models are proposed.
- ➢ Gait data-set of 120 subjects are collected at RAMAN Lab, MNIT Jaipur, India using the visionbased methodology. All subjects belong to the 5-60 years age group.
- Four type of novel mappings, one-to-one (knee-to-knee, hip-to-hip, and ankle-to-ankle), many-to-one (knee+hip+ankle-to-knee/hip/ankle), one-to-many (knee/ankle/hip-to-knee+hip+ankle), and many-to-many(knee+hip+ankle-to-knee+hip+ankle), are also developed.
- These mapping provides the reference trajectories to biped robot and relationships between the knee/hip/ankle trajectories is also obtained.
- Performance evaluation of developed models is measured by average error, maximum error and root mean square error.



Learning models and Parameters

Multi-layer Perceptron Regressor						
Deep Neural Network						
NDNINI	S.No.	Parameter	Value/function			
≻RNN	1.	λ	0.3			
≻LSTM	2.	Activation function	relu			
≻GRU	3.	Learning rate	0.2			
	4.	Optimizer	adam			
 >RNN >LSTM >GRU >Bidirectional RNN Https://dtraiestku/ 	5.	Loss function	mse			
➢Bidirectional LSTM	6.	Epochs	60			
➢Bidirectional GRU						

Results I

Model	P.I.	Knee-to-knee	Hip-to-hip	Ankle-to-ankle
	AE	6.2908	1.9121	5.5197
MLP	ME	23.7771	4.7296	11.2024
	RMSE	9.4732	2.3151	6.36319
	AE	2.8857	1.4954	0.7807
DeepNN	ME	6.5401	3.309	2.1124
	RMSE	1.6987	1.2228	0.8835
	AE	3.0781	1.7569	1.1838
RNN	ME	6.0731	3.6246	1.3255
	RMSE	1.7544	2.8473	1.0881
	AE	3.1862	1.6079	0.9155
LSTM	ME	6.2777	3.4711	2.4823
	RMSE	1.7851	1.2681	0.9568
	AE	2.6207	1.5868	1.4354
GRU	ME	7.7649	5.5331	3,0667
	RMSE	1.6188	1.2596	D 1981
	AE	2.6454	1.4872	1.0455
Bi-RNN	ME	6.3375	4.4308	2.8836
	RMSE	1.6264	1.2195	1.0224
	AE	2.6951	1.7883	1.117
Bi-LSTM	ME	7.3271	4.3861	2.8323
	RMSE	1.6416	1.3372	1.0543
	AE	2.5379	1.3471	1.2121
Bi-GRU	ME	6.3704	3.93727	2.2754
	RMSE	1.5931	1.1606	1.1009

► It allows the comparative analysis of developed deep learning models for the one-to-one mapping.

>It shows that bidirectional GRU outperforms the other models for knee-to-knee and hip-to-hip mapping.

≻whereas the LSTM performs best for the ankle-to-ankle mapping.

Results II

Model	P.I.	All-to-knee	All-to-hip	All-to-ankle
	AE	0.7508	0.2908	0.4255
MLP	ME	2.1772	1.0202	0.9461
	RMSE	1.0395	0.4409	0.4999
	AE	1.2021	0.4227	0.4001
DeepNN	ME	6.7663	1.4643	2.4318
	RMSE	1.0963	0.6501	0.6325
	AE	0.9465	0.4091	0.5324
RNN	ME	5.7527	0.8457	3.7236
	RMSE	0.9272	0.63962	0.7296
	AE	0.9717	0.6979	0.2851
LSTM	ME	7.4635	2.4919	1.6657
	RMSE	0.9857	0.8354	0.5339
	AE	0.5615	0.4323	0.1594
GRU	ME	5.9958	1.3107	07497
	RMSE	0.7493	0.6575	× 0.3993
	AE	1.5585	0.4636	0.7678
Bi-RNN	ME	4.6074	1.4691	3.3267
	RMSE	1.2484	0.6808	0.8762
	AE	0.3751	0.5196	0.3314
Bi-LSTM	ME	2.4749	2.8441	1.9941
	RMSE	0.6124	0.7208	0.5757
	AE	0.4399	0.4585	0.3701
Bi-GRU	ME	5.1721	2.1386	3.3212
	RMSE	0.6633	0.6771	0.6083

➢It allowed the comparative analysis of developed deep learning models for the many-to-one mapping.

The result shows that the different models perform differently for different mapping i.e., bidirectional LSTM, MLP, and GRU outperform the other models for all to- knee, all-to-hip, and all-to-ankle respectively.

Model P.I.		Knee		Hip		Ankle]		
Widder	1.1.	Knee	Hip	Ankle	Knee	Hip	Ankle	Knee	Hip	Ankle	
	AE	6.2908	6.1882	5.5959	2.8889	1.9121	1.5112	5.7116	6.8072	5.5197]
MLP	ME	23.7770	23.0906	21.5186	4.6177	4.7296	3.2119	10.0522	11.0470	11.2024	
	RMSE	9.4732	9.5314	8.7497	3.1759	2.3151	1.7457	6.3620	7.3793	6.3631	
	AE	2.2318	0.7957	0.7490	1.8833	1.4477	0.4814	2.0431	1.1003	0.9844	S
DeepNN	ME	6.6221	2.8798	3.1660	5.3841	4.1839	1.4275	6.4817	6.4971	2,7319	
	RMSE	2.8898	1.0266	1.0509	2.3418	1.8002	0.6040	2.5954	1.5826	1.2126	
	AE	2.5153	0.7564	0.7222	1.7681	1.2951	0.4414	1.9912	1.0725	1.0095	1
RNN	ME	6.9760	2.9882	3.4405	6.8647	3.6108	1.7430	6.4393	6 5047	2.7440	
	RMSE	3.1482	0.9920	0.9958	2.3420	1.5882	0.5680	2.5317	1.5642	1.1940	
	AE	2.2272	0.6867	0.7336	1.9510	1.4344	0.4589	1.9830	1.1009	0.9903]
LSTM	ME	6.7782	2.4175	3.1123	6.2262	5.3095	1.4122	6.8111	5.9199	2.8252	
	RMSE	3.0288	0.9174	1.0359	2.4693	1.8006	0.5887	2.5359	1.4522	1.1827	
	AE	2.1811	0.6785	0.7299	1.8018	1.4670	0.5372	2.1175	1.1184	1.0252]
GRU	ME	7.0002	2.9725	3.1526	5.3978	4.140	* 1.3949	6.9679	6.4279	2.6979	
	RMSE	2.8436	0.8854	0.9578	2.2431	1.7888	0.6902	2.6519	1.5766	1.2132	
	AE	2.5162	0.9740	0.8737	1.7411	1.5281	0.5239	1.9245	1.1308	0.9969]
Bi-RNN	ME	6.5980	7.5067	2.7951	6.9135	4.2636	1.9123	6.4265	6.6706	2.6770	
	RMSE	3.1485	1.5105	1.0821	2.3221	1.7872	0.6627	2.4277	1.5561	1.1570	
	AE	2.4909	0.6930	0.8238	1.7672	1.5071	0.5268	1.7629	0.9758	0.9723	
Bi-LSTM	ME	6.4556	2.3855	3.1655	7.2391	5.3377	2.2171	6.7405	6.1717	2.6433	
	RMSE	3.1430	0.9113	1.0409	2.3997	1.8676	0.6965	2.3408	1.3531	1.1689	
	AE	2.3665	0.6941	0.6686	1.8536	1.5886	0.4701	2.0579	1.2249	1.0280	1
Bi-GRU	ME	6.5966	2.8493	3.4161	5.9284	5.1301	1.4402	6.7122	7.1923	2.7927	
	RMSE	3.0855	0.8918	0.9323	2.4509	1.9616	0.5602	2.5798	1.6024	1.2092	

>It allows the comparative analysis of developed deep learning models for the one-tomany mapping.

The result shows that the different models perform differently for different mapping.

≻Knee-to-all mapping: GRU and bidirectional GRU out-performs the knee to knee/hip and knee to ankle mapping based on the average/root mean square error respectively. Whereas, bidirectional LSTM is performing well based on the maximum error indices.

Hip-to-all mapping: RNN outperforms the other models.

➤Ankle-to-all mapping: bidirectional LSTM has outperformed the other models based on the performance indices.

Results IV

Model	P.I.		All	
Niodei	1.1.	Knee	Hip	Ankle
	AE	0.7508	0.4255	0.2908
MLP	ME	2.1772	0.9461	1.0202
	RMSE	1.0395	0.4999	0.4409
	AE	0.1240	0.0593	0.0493
DeepNN	ME	1.0038	0.3087	0.1952
	RMSE	0.2127	0.0846	0.0675
	AE	0.1469	0.0491	0.0253
RNN	ME	0.7479	0.3023	0.1014
	RMSE	0.2213	0.0753	0.0339
	AE	0.1035	0.0536	0.0585
LSTM	ME	0.7986	0.2035	0.1882
	RMSE	0.1742	0.0689	0.0724
	AE	0.07135	0.0544	0.0431
GRU	ME	0.7855	0.1421	0.1559
	RMSE	0.1585	0.0644	0.0602
	AE	2.4752	1.3835	0.9294
Bi-RNN	ME	6.4118	3.9395	2.8009
	RMSE	3.1036	1.7338	1.1592
	AE	0.04581	0.0298	0.0234
Bi-LSTM	ME	0.9549	0.1144	0.1227
	RMSE	0.1203	0.0391	0.0327
	AE	0.0827	0.0643	0.0331
Bi-GRU	ME	0.5594	0.1854	0.2575
	RMSE	0.1171	0.0757	0.0443

➢ It allowed the comparative analysis of developed deep learning models for the many-to-many mapping.

The result shows that the bidirectional LSTM outperforms the other models for the all-to-hip/ankle whereas bidirectional GRU performs best for the all-to-knee mapping.

➢Overall, bidirectional deep learning methods outperform all other approaches, and also manyto-many mapping outperforms all other mappings.

Conclusion and Future Scope

This presented the kinematic modeling of the gait data-set of humans using deep learning approaches (multi-layer perceptron, deep neural network, recurrent neural network, long-short term memory, gatted recurrent unit, and their bidirectional networks).

The result shows that the bidirectional deep learning approaches outperform all other methods. In addition, the many-to-many mapping performs better than all other mappings.

>Overall, this study is helpful in multiple ways, (a) reference gait trajectory generation, (b) next time step state estimation in case of some onboard sensor failed, (c) one sensor can be useful to estimate the next joint position, and (d) next time control can be evaluated in advance.

Certain issues can be tackled in the future like data-processing and tuning of hyperparameters of models using the global optimizer.

> As a future scope, the authors will implement the above-proposed mapping models on the real biped robot.

References

[1] B. Singh, R. Kumar, and V. P. Singh, "Reinforcement learning in robotic applications: a comprehensive survey," Artificial Intelligence Review, pp. 1–46, 2021

[2] K. R. Embry, D. J. Villarreal, R. L. Macaluso, and R. D. Gregg, "Modeling the kinematics of human locomotion over continuously varying speeds and inclines," IEEE transactions on neural systems and rehabilitation engineering, vol. 26, no. 12, pp. 2342–2350, 2018.

[3] C. Prakash, K. Gupta, A. Mittal, R. Kumar, and V. Laxmi, "Passive marker based optical system for gait kinematics for lower extremity," in Procedia Computer Science, vol. 45, no. 3. Elsevier, 2015, pp. 176–185.

[4] C. Prakash, A. Mittal, R. Kumar, and N. Mittal, "Identification of spatiotemporal and kinematics parameters for 2-d optical gait analysis system using passive markers," in 2015 International Conference on Advances in Computer Engineering and Applications. IEEE, 2015, pp. 143–149.

[5] C. Prakash, A. Mittal, S. Tripathi, R. Kumar, and N. Mittal, "A framework for human recognition using a multimodel gait analysis approach," in 2016 International Conference on Computing, Communication and Automation (ICCCA). IEEE, 2016, pp. 348–353.

[6] C. prakash, A. Mittal, R. Kumar, and N. Mittal, "Identification of gait parameters from silhouette images," in 2015 Eighth International Conference on Contemporary Computing (IC3). IEEE, 2015, pp. 190–195.

[7] C. Prakash, K. Gupta, R. Kumar, and N. Mittal, "Fuzzy logic-based gait phase detection using passive markers," in Proceedings of Fifth International Conference on Soft Computing for Problem Solving. Springer, 2016, pp. 561–572.

[8] C. Prakash, A. Sujil, R. Kumar, and N. Mittal, "Linear prediction model for joint movement of lower extremity," in Recent Findings in Intelligent Computing Techniques. Springer, 2019, pp. 235–243.

[9] C. Prakash, R. Kumar, N. Mittal, and G. Raj, "Vision based identification of joint coordinates for marker-less gait analysis," Procedia computer science, vol. 132, pp. 68–75, 2018.

[10] M. W. Gardner and S. Dorling, "Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences," Atmospheric environment, vol. 32, no. 14-15, pp. 2627–2636, 1998.

[11] A. Canziani, A. Paszke, and E. Culurciello, "An analysis of deep neural network models for practical applications," arXiv preprint arXiv:1605.07678, 2016.

[12] L. R. Medsker and L. Jain, "Recurrent neural networks," Design and Applications, vol. 5, pp. 64–67, 2001.

[13] K. Greff, R. K. Srivastava, J. Koutn'ık, B. R. Steunebrink, and J. Schmidhuber, "Lstm: A search space odyssey," IEEE transactions on neural networks and learning systems, vol. 28, no. 10, pp. 2222–2232, 2016.

[14] R. Dey and F. M. Salem, "Gate-variants of gated recurrent unit (gru) neural networks," in 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS). IEEE, 2017, pp. 1597–1600.

[15] M. Schuster and K. K. Paliwal, "Bidirectional recurrent neural networks," IEEE transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

