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Introduction

➢ Synthesis of reference joint trajectories for the legged robot is a very difficult task due to higher

degrees of freedom.

➢This work presents the kinematic modeling of human gait data, which is used as the reference

joint trajectory for a Biped robot, 8 deep learning models are proposed.

➢ Gait data-set of 120 subjects are collected at RAMAN Lab, MNIT Jaipur, India using the vision-

based methodology. All subjects belong to the 5-60 years age group.

➢ Four type of novel mappings, one-to-one (knee-to-knee, hip-to-hip, and ankle-to-ankle), many-

to-one (knee+hip+ankle-to-knee/hip/ankle), one-to-many (knee/ankle/hip-to-knee+hip+ankle),

and many-to-many(knee+hip+ankle-to-knee+hip+ankle), are also developed.

➢ These mapping provides the reference trajectories to biped robot and relationships between the

knee/hip/ankle trajectories is also obtained.

➢ Performance evaluation of developed models is measured by average error, maximum error and

root mean square error.
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Methodology
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Learning models and Parameters

➢Multi-layer Perceptron Regressor

➢Deep Neural Network

➢RNN

➢LSTM

➢GRU

➢Bidirectional RNN

➢Bidirectional LSTM

➢Bidirectional GRU
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Results I

IEEE-CENTON-2021 (International Conference

on Disruptive Technologies for Multi-Disciplinary Research 

& Applications (CENTON-2021))

➢It allows the comparative analysis of

developed deep learning models for the one-to-

one mapping.

➢It shows that bidirectional GRU outperforms

the other models for knee-to-knee and hip-to-hip

mapping.

➢whereas the LSTM performs best for the

ankle-to-ankle mapping.
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Results II
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➢It allowed the comparative analysis of

developed deep learning models for the many-

to-one mapping.

➢The result shows that the different models

perform differently for different mapping i.e.,

bidirectional LSTM, MLP, and GRU outperform

the other models for all to- knee, all-to-hip, and

all-to-ankle respectively.htt
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Results III
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➢It allows the comparative analysis of

developed deep learning models for the one-to-

many mapping.

➢The result shows that the different models

perform differently for different mapping.

➢Knee-to-all mapping: GRU and bidirectional

GRU out-performs the knee to knee/hip and

knee to ankle mapping based on the

average/root mean square error respectively.

Whereas, bidirectional LSTM is performing

well based on the maximum error indices.

➢Hip-to-all mapping: RNN outperforms the

other models.

➢Ankle-to-all mapping: bidirectional LSTM

has outperformed the other models based on the

performance indices.
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Results IV
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➢It allowed the comparative analysis of

developed deep learning models for the many-

to-many mapping.

➢The result shows that the bidirectional LSTM

outperforms the other models for the all-to-

hip/ankle whereas bidirectional GRU performs

best for the all-to-knee mapping.

➢Overall, bidirectional deep learning methods

outperform all other approaches, and also many-

to-many mapping outperforms all other

mappings.
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Conclusion and Future Scope

➢This presented the kinematic modeling of the gait data-set of humans using deep learning

approaches (multi-layer perceptron, deep neural network, recurrent neural network, long-short

term memory, gatted recurrent unit, and their bidirectional networks).

➢The result shows that the bidirectional deep learning approaches outperform all other

methods. In addition, the many-to-many mapping performs better than all other mappings.

➢Overall, this study is helpful in multiple ways, (a) reference gait trajectory generation, (b)

next time step state estimation in case of some onboard sensor failed, (c) one sensor can be

useful to estimate the next joint position, and (d) next time control can be evaluated in

advance.

➢Certain issues can be tackled in the future like data-processing and tuning of hyper-

parameters of models using the global optimizer.

➢As a future scope, the authors will implement the above-proposed mapping models on the

real biped robot.
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